

Crop case and system case studies

Per Kudsk Aarhus University, F

Aarhus University, Denmark

FOOD QUALITY AND SAFETY

Agrascope Liebeleki-Pasieus Research Station ALP Agrascope Reskenholt-Tänikan Research Station AST

Crop case studies

Objectives

- Exploit the current knowledge on optimised pesticide use in existing cropping systems
- Develop optimised crop protection strategies and applied them in different agro-ecological contexts
- Change end-user practice from a 'pesticide only and no-risk attitude' towards a more integrated strategy

Crop case studies

- Crops should represent different domains of crops:
 - Major and minor crops
 - Annual and perennial crops
 - Arable and vegetable crops
 - Field and glasshouse crops

Crop case studies

- Wheat
- Potato
- Tomato
- Pomefruit
- Integrated Weed Management (Maize)
- Maize
- Field vegetables
- Banana
- Grapevine

Crop case studies

Focus one specific crop pest issues, e.g.
 fungal diseases in wheat, late blight in potato
 and whiteflies in tomato

Output:

- Reports
- Guides for advisors and farmers (From Science to Field)
- Input to Endure Information Centre

Wheat

Significans of cultivar resistance

Source: 108 trials in France

Wheat

Cultivar resistance and fungicide requirement

Resistant cultivar

Susceptible cultivar

A: GS 25-31, B: GS 32-36, C: GS 37-50, D: GS 51-64

Wheat

Fusarium

DON risk assessment grid on wheat ARVALIS-Institut du végétal 2008

Figure 4: Decision key for DON risk (Source: Arvalis, France)

Wheat EuroWheat

Potato

Late blight

Reducing primary inoculum sources

Decision Support Systems

Performance of fungicides

Cultivar resistance

Tomato

Whiteflies – occurence of pest and virus

Tomato

Whiteflies – occurence of pest and virus

Area	Cycle	Total surface (ha)	%Chemical	% IPM-Insec.	%IPM-BC	% Organic
Germany	Α	3	-	-	90,5	9,5
Germany	С	17	6	18	70	6
	Α	20	-	18	72	10
South France	В	35	-	100	-	-
	С	50	-	20	80	-
North Spain-1	Α	31	11	19	69	1
	В	18	7	8	69	16
North Spain-2	Α	17	30	50	20	-
North Spain-2	В	15	30	50	20	-
South Spain	Α	6700	3	78	19	-
South Spain	В	3300	7	58	35	-

Tomato

Whiteflies – tools to manage the pest

Biological control

Exclusion

IPM strategies

Pomefruit

Scab, brown spot and codling moth -State of art of prevention and control strategies

- Lake Constance (Germany and Switzerland),
- Cataluña (Spain),
- Emilia Romagna, South Tirol and Trentino (Italy)
- Rhone Valley (France)
- Belgium
- The Netherlands
- Sweden.

Pomefruit Integrated control of codling moth

Element of the strategy: Population Monitoring: Pheromone traps								
State of the art		Ready	Under development					
		9	0					
Perspectives for (further)		Negative	Neutral	Positive				
implementation		2	2	3				
Obstacles	None	Labour	Economic	Practical				
Obstacles	Χ							
Use in practice (% of growers)	From 5% to 100% in IPM strategies.						

Element of the strategy: Decision Support Systems: Tolerance Thresholds								
State of the art		Ready	Under development 2					
		5						
Perspectives for (further)		Negative	Neutral	Positive				
implementation		0	1	3				
Obstacles None		Labour	Economic	Practical				
Obstacles	Χ							
Use in practice (% of growers)	Lower than for phe	enology models.					

Pomefruit

Scab, brown spot and codling moth -State of art of prevention and control strategies

Conclusions:

- Knowledge of integrated control well known
- Modern communication technologies are used
- Importance of different tools the same in the North and South
- New EU member states could profit from existing tools
- Bottlenecks exists, e.g. acceptance of resistant cultivars and technical and economic reasons

Integrated Weed Management

Comparing strategies in maize

- Standard chemical treatment
- •IWM (inter-row cultivation + chemical)
- Advanced IWM (less herbicide than IWM)

Pisa (I), Dijon (F) & Flakkebjerg (DK)

Integrated Weed Management

Comparing strategies in maize

- Standard and IWM provided similar weed control
- Advanced IWM provided poorer weed control in Pisa but not in Dijon and Flakkebjerg

Integrated Weed Management

Yields, costs and environmental impact

Cob yield (t DM/ha)

Relative costs

Environmental index (*Ipest*)

Integrated Weed Management

Other options for Integrated Weed Management

- Crop rotation
- Stale seedbed
- Cover crops
- Intra-row cultivation

Maize

Key pests and options to reduce pesticides in eleven European regions

Maize

Importance, occurrence and population development of insect pests

Order	Species	Hung	BLI BE	gary Tol	50 78 M	an Eric	Talley Jalley	TOP ST	and Oue	st De	STREET C	armany P	Southwest dand Southwest
Lepidoptera	Ostrinia nubilalis (Pyralidae)	-	-	₽	-	1	±	В			1	→	1
	Sesamia nonagrioides (Noctuidae)			<u> </u>	-	1	-				8]
	Agrotis spp. (Noctuidae)	+	-	Ţ	-	1	_	⊞	⊞	⊞	□]
	Helicoverpa armigera (Noctuidae)	-	-	1	†	=					Œ	=]
Coleoptera	Diabrotica virgifera virgifera (Chrysomelidae)	-	I →	T†							1	1]
	Agriotes spp. (Elateridae)		-	-	-	-	H	H	=	2	-	₽]
Sternorrhyncha	Aphididae	*	1	-	→	-	→	2	-	-	-	-]
Diptera	Oscinella frit (Chloropidae)	*	Ð	⊞	▣		•	-	-	₽	-	1]
Auchenorrhyncha	Zyginidia scutellaris (Cicadellidae)	→	→	-	-	-	₽				-	В]

Maize European corn borer

Parasitization rate of first and second generation ECB after mass release of *Trichogramma* wasps

Source: Biotop, Valbonne, France

Maize Fusarium

Management Factors	Impact
Strategic	
Crop rotation	Hiah
Crop residue management	High
Good nutrient supply	Medium
Tactical	
Variety choice	Medium
Seed quality	Low
Sowing time	Low
Crop structure	Low
Control measures	
Disease control	Low
Weed control	Low
Insect Control	High
Harvest and storage	High

Maize Western Corn Rootworm

Field vegetables

Tasks:

- PPP (including BCA) availability in selected EU countries (major differences)
- Evaluation of past and ongoing research on soil fumigation and steaming
- Joint experimentation
- Landscape management to improve biological control

System case studies

- Identify science-based sources of innovation for implementing alternative crop protection strategies (from basic research and case studies)
- Promote a system approach and explore the potential of ecological approaches
- Identify relevant criteria for assessing the sustainability of crop protection strategies
- Design ex ante assessment tools through knowledge-based models that would make it possible the evaluation of innovative strategies

System case studies

Designing innovative crop protection strategies requires:

- that emerging technologies are considered (DNAbased detection techniques, robotics, IT, etc),
- that new sources of resistance genes are explored
- that the potential of landscape management of cropping systems or deployment of semiochemicals for reducing pest incidence are considered
- etc.

System case studies

- Orchard systems
- Winter crop-based systems
- Maize-based systems

System case studies

Maize-based systems

Status

- Describing current systems in different regions
- Proposing advanced systems making use of existing tools and technologies

System case studies Maize-based systems

- MS1: Silage maize, in rotation, irrigated
- MS2: Silage maize, in rotation, not irrigated
- MS3: Silage maize, not in rotation, irrigated
- MS4: Silage maize, not in rotation, not irrigated
- MS5: Grain maize, in rotation, irrigated
- MS6: Grain maize, in rotation, not irrigated
- MS7: Grain maize, not in rotation, irrigated
- MS8: Grain maize, not in rotation, not irrigated

System case studies

Maize-based systems

Practices	MS1-MS5	MS3-MS7	MS6
Field margin management	X		
Early detection	X		
Major tillage (ploughing)	X		
Crop resistance	X	X	
Crop choice in rotation	X		X
Variety choice	X		
Early sowing	Х	Х	X
Insecticides	X	X	X
Seed treatments	X	X	X

System case studies

Maize-based systems

Status

- Describing current systems in different regions
- Proposing advanced systems making use of existing tools and technologies
- Compare the economic, environmental and social sustainability of the current and advanced systems using DEXiPM
- SWOT (Strenghts Weaknesses Opportunities Threats) analysis

System case studies

Maize-based systems

Future activities

- Design innovative systems
- Compare the economic, environmental and social sustainability of the innovative systems to that of the current and advanced systems using DEXiPM

February 2007

Thank you for your attention

Questions?

